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Computation of Magnetic Forces on Moving Conductors
by Using ELEKTRA and Other 3-D Computer Codes

by

Z. Wang, H. Coffey, and T. Mulcahy

Abstract

The finite-element computer code ELEKTRA is the only publicly available
code known to us that is capable of solving 3-D eddy-current problems that entail
the use of moving electrical conductors having finite dimensions. It is, therefore,
expected to become a standard tool for the analysis of magnetic levitation (maglev)
systems using sheet guideways. This study systematically evaluates the ELEKTRA
code by comparing it with experimental data and "benchmark" solutions, as
appropriate. In addition, alternatives to ELEKTRA were investigated, and a new
computer code, based on an extension of the double-Fourier series analysis, was
developed.

1 Introduction

Magnetic levitation (maglev) transportation systems have received considerable attention as
a means of relieving both highway and air-traffic congestion with minimal environmental impact.
The National Maglev Initiative was established to assess the potential of these systems in the
United States. As a part of the National Maglev Initiative program, contracts were awarded for
four maglev system concept definitions. Three of these systems could be analyzed by more-or-less
standard means of analysis. The fourth, however, used a reaction plate of aluminum as part of the
levitation system and required a nonstandard analysis. A Government Maglev System Assessment
team was established to assess the technical viability of these concepts. The results and the
supporting analyses for the magnetic calculations made by this team were evaluated by the mazlev
group at Argonne National Laboratory (ANL).

The velocity version of ELEKTRA is a finite-element computer code, developed by Vector
Fields, Ltd., that is capable of solving three-dimensional (3-D) eddy-current problems with a
moving conductor. As the only known publicly available code capable of solving these problems,
it is likely to become a standard tool for the analysis of maglev systems. On the other hand, the
ELEKTRA code is new and untested; it is important, therefore, that the code be systematically
validated. Since the ELEKTRA code's use is complicated, formal training of users is necessary.
(Training is available from Vector Fields, Ltd.)

The objectives of this report are (1) to validate solutions of the ELEKTRA code with
experiments and known analytical solutions for different sizes of magnets over a wide velocity



range; (2) to check the code's ability to simulate full-scale, full-speed systems: and (3) to develop
an alternative method as a contingency in case ELEKTRA proves unsatisfactory.

An analogous computer program, called MAGFORCE. was developed at ANL by
H. Coffey. This program is based on a published Fourier transformation formulation (Coffey
1972). MAGFORCE was used to check and validate ELEKTRA calculations.

This report consists of seven sections.

Section 1, this section, outlines the coverage of the study.

Section 2 describes the comparison of ELEKTRA and MAGFORCE calculations with
experimental data, measured by ANL staff, for a small-scale rectangular magnet suspended over a
moving aluminum plate.

Section 3 demonstrates that ELEKTRA is capable of edge-effects analysis by simulating a
small rectangular coil near the edge of the moving aluminum plate.

Section 4 details the numerical error introduced when calculating forces using very low
velocity and then details corrective measures for avoiding the error.

Section 5 demonstrates that ELEKTRA is unable to simulate a large-scale, full-speed real
maglev system unless a new algorithm is used, such as the upwinding technique.

Section 6 discusses other alternatives that might be used to calculate forces for continuous-
sheet guideways. A new computer code, based on a double-Fourier series method, was developed
at ANL, and results were compared with experimental data and MAGFORCE and ELEKTRA
results.

Section 7 gives the conclusions reached on the basis of this study.
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2 Validation of ELEKTRA with an Experimental Model

A simple laboratory model was used to validate the predictions of ELEKTRA at a small
scale and low velocity. Figure 1 shows the configuration of the small-scale laboratory/computer
simulation model. In these experiments, the forces were measured on a 50.8- x 25.4- x 6.35-mm
permanent magnet suspended over a 1.2-m diameter, vertically mounted, rotating wheel wrapped
with a 6061-T6 aluminum plate. The wheel and aluminum plate were rotated at different velocities
for the experiment. The aluminum plate wrapped around the wheel is 6.35 mm thick and 101 mm
wide. The magnet was suspended at different set distances over the moving plate.

The lift and drag forces, measured by Debora Yacobellis and Thomas Mulcahy, were
compared with calculations made with ELEKTRA and MAGFORCE. MAGFORCE, which is
very fast, has been found to be quite reliable in calculating the forces experienced by magnets over
infinitely wide conducting sheets of variable thickness; however, it is not capable of computing the
effects of finite widths. MAGFORCE serves as a good benchmark for verifying the calculations of
ELEKTRA, which is slow but capable of performing finite-width calculations and working with
more complex model geometries.

For all experiments, the Peclet number (p = vhi.ics/2<l) must be satisfied. (In calculating
the Peclet number, cr is plate conductivity, v is plate velocity, J.t is plate permeability, and h is the
average element length [mesh size] in the direction of velocity.) The Peclet number must be
smaller than 1 to avoid oscillation in the numerical computations.

Coil
Cross Section

11-11	
Magner
or Coil

Magnet (or coil) dimensions:

Length	 1 = 50.3 mm
Width	 w = 25.4 mm
Thickness	 t = 6.35 vim
Ampere turns	 NI =5994 A-T
Suspension height	 h = 5.0, 7.5, and 12.7 mm

Guideway characteristics:
Aluminum conductivity o = 2.5 x 10 7 nahoini
Plate thickness 	 t = 6.35 trim

Suspension Height I	 Plate width	 w= 101 mm

6.35 mm

6.35 mm	 Aluminum Plate Cross Section

101 mm
(Width of Wheel and Aluminum Plate)

FIGURE 1 Configuration of a Small-Scale Laboratory/Computer Simulation Model
(cross section)

Th	
/ (Mounted Around Wheel Edge)

Edge of Wheel
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Since neither MAGFORCE nor ELEKTRA simulates a permanent magnet directly, an
equivalent coil has to be used in the computer calculations. In order to simulate the permanent
magnet used for the experiments, the equivalent ampere-turns of the coil must be determined. One
way to determine the ampere-turns is to compare the amplitude and shape of the magnetic field in
the gap between the permanent magnet and the aluminum conductor plate. Using this technique, a
coil equivalent to the magnet used in the experiments would have 5,994 ampere-turns (NI). The
outer dimensions of the coil used in ELEKTRA (and MAGFORCE) correspond exactly to the outer
dimensions of the permanent magnet used in the experiment; the coil cross section is 1-mm wide
by 6.35-mm high.

When constructing the coil mesh for the computer simulation, the mesh distribution around
and inside the coil should be made as fine as possible to obtain more accurate force computations.
Since the magnet or coil is positioned at the center of the aluminum plate, the symmetrical condition
can be used. This means only half the space needs to be meshed and calculated. The total number
of nodes for the half-space is around 16,000. Computer computation time for a specific velocity is
normally around 2-3 h.

Figures 2 through 4 show the lift and drag forces vs. velocity calculated for suspension
heights of 5, 7.5, and 12.7 mm. Experimental results are plotted along with ELEKTRA and
MAGFORCE calculations. Both MAGFORCE and ELEKTRA calculations agree closely with the
experimental data. Calculated forces for a 12.7-mm suspension height, however, match the
experimental data better than those for a 5-mm suspension height. The reason may be that in the
experiments the permanent magnet is partially demagnetized. This demagnetization reduces the lift
and drag forces. When the magnet is closer to the aluminum plate, a greater magnetic force is
created. The stronger the magnetic force between the magnet and the plate, the stronger the
demagnetization effect becomes. However, neither MAGFORCE nor ELEKTRA considers this
effect.

When the velocity was reduced to 2 m/s, the lift forces calculated from ELEKTRA appear
slightly negative, as shown in Figures 2 and 3. This numerical error is caused by the method used
to compute the net force — the force is calculated as the small differences in large numbers. In
order to obtain accurate results for very low speeds, special measures must be taken, as discussed
later in Section 4.

To test ELEKTRA symmetrically, the number of nodes was gradually increased for one
case (suspension height = 12.7 mm and velocity = 20 m/s) to see how the number of nodes
affects the results. The comparison of the different mesh nodes for the ELEKTRA code is shown
in Table 1. In Table 1, case I with 16,324 nodes was taken as a reference and all other cases
were compared with it. Table 1 shows that the more nodes, the more accurate the results. The
trade-off is that a higher number of nodes requires more computing time.
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FIGURE 2 Forces on a 50.8- x 25.4- x 6.35-mm Magnet Suspended 5.0 mm
over a Moving 6.35-mm-Thick Aluminum Plate
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FIGURE 3 Forces on a 50.8- x 25.4- x 6.35-mm Magnet Suspended 7.5 mm
over a Moving 6.35-mm-Thick Aluminum Plate
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FIGURE 4 Forces on a 50.8- x 25.4- x 6.35-mm Magnet Suspended
12.7 mm over a Moving 6.35-mm-Thick Aluminum Plate

TABLE 1 Comparison of Different Mesh Nodes for the ELEKTRA Code

Lift	 Force Drag Force
No. of Lift Drag Difference Difference Computing
Nodes Force (N) Force (N) (%) (%) Time (min)

16,324 2.413 1.566 0 0 112
11,289 2.309 1.559 4.3 -0.4 74
6,390 2.265 1.606 6.1 2.55 30
4,950 2.269 1.821 5.97 16.28 21

6

5

F!. 3

2
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0
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In summary, as long as the Peclet number is satisfied, and the velocity is not too low, the
velocity version of ELEKTRA works very well. When the velocity is below 5 m/s, a numerical
error in the lift force often occurs unless special measures, as discussed in Section 4, are taken.
Velocity between 5 and 10 m/s may also cause problems. Velocities greater than 10 m/s work
well in the ELEKTRA program.



3 ELEKTRA: Applied to Edge-Effects Analysis

As shown in Section 2, ELEKTRA worked very well (except at very low velocity) for a
small laboratory model. This section presents the results obtained by usin g ELEKTRA to calculate
the forces on a small rectangular coil near the edge of a moving aluminum plate. J. R. Hull
conducted preliminary comparisons of this type in 1992, using rather coarse computation mesh
sizes (Hull 1992). Expanding on this work, the mesh distributions were optimized and more
nodes were added for more quantitative testing.

The geometry of the model and other information is the same as that presented in
Section 2. The equivalent ampere-turns (NI) for this particular ma gnet was calculated to be 5.715.
The gap (h) between the bottom of the magnet (coil) and the top surface of the aluminum plate is
12.7 min: the distance of the magnet (coil) from the edge of the aluminum plate is H*.

Three different values of H* have been simulated: H* = 12.7 mm (more than 100%
overlap). H* = 0 mm (100% overlap), and H* = -12.7 mm (50% overlap). See Figures 5
through 7. The total number of nodes is about 15,000, and the average number of iterations to
achieve convergence is around 300-500 at low velocities (10-20 m/s) and 800-1.000 at high
velocities (30-40 m/s). Around 3-4 h of computation is required for each velocity. The
calculated and experimental lift, drag, and guidance forces (shown in Figures 5 through 7) are in
reasonable agreement, considering the uncertainty in the parameters used (especially the
conductivity of the aluminum plate and the equivalent-current density in the magnet). Note that
guidance forces are created since the magnet (coil) is not located symmetrically over the aluminum
plate. The agreement between calculated and experimental results, as shown in Figure 8. can be
improved further by increasing the number of nodes (beyond 18,000 nodes) in the coil mesh.
This is to be expected because at higher velocities the skin depth decreases, resulting in a steeper
gradient in the magnetic field and requiring more nodes to accurately describe the field variation
with magnet position on the plate.
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Open Symbols: ELEKTRA Results
Solid Symbols: Experiment
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Fl . 12a mm
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FIGURE 5 Force on a 50.8- x 25.4- x 6.35-mm Magnet Suspended over a
Moving 6.35-mm-Thick Aluminum Plate, 15,000 Nodes for ELEKTRA;
H * = 12.7 mm
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FIGURE 6 Force on a 50.8- x 25.4- x 6.35-mm Magnet Suspended over a
Moving 6.35-mm-Thick Aluminum Plate, 15,000 Nodes for ELEKTRA;
H • = 0 mm
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Solid Symbols: Experiment
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Col
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FIGURE 7 Force on a 50.8- x 25.4- x 6.35-mm Magnet Suspended over a
Moving 6.35-mm-Thick Aluminum Plate, 15,000 Nodes for ELEKTRA;

= -12.7 mm
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FIGURE 8 Force on a 50.8- x 25.4- x 6.35-mm Magnet Suspended over a
Moving 6.35-mm-Thick Aluminum Plate, 18,000 Nodes for ELEKTRA;
H* = 12.7 mm
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4 ELEKTRA: Analysis at Very Low Velocities

In Sections 2 and 3 it was shown that ELEKTRA works well for small-scale laboratory
models. In this section ELEKTRA will be evaluated for medium-size models. The geometry of
the coil in the simulated test model (shown in Figure 9) is the same as that used in the Magneplane
design (Coffey et al. 1992), but it is reduced in size by a factor of four. The coil size is
570 x 110 x 10 mm; the aluminum plate is 1,600-mm wide and 20-mm thick, with conductivity
of (5 = 2.5 x 10 7 . In order to satisfy the Peclet number, the maximum velocity that ELEKTRA
can simulate is 5 m/s if the number of nodes is to remain within our computer's capacity.
Problems were encountered when the velocity was reduced to 2 m/s.

Three coil mesh discretizations were set up, as shown in Figure 10. These mesh
discretizations are almost the same except that in the region indicated by an arrow; the number of
subdivisions is 5, 8, and 10 for cases 1, 2, and 1 respectively. The total number of mesh
elements (nodes) in these three mesh models is 16,458, 21,879, and 22,113, for cases 1, 2, and 3,
respectively. These slight differences in the number of nodes were not expected to change the
overall results significantly. However, big differences in the computed lift force were found, as
shown in Table 2.

The eddy currents in the aluminum plate were calculated and plotted for the three cases
shown in Figure 11. There was no perceptible difference. However. Figure 12 shows that Bx at
the plane y = 50 mm (which is the center plane of the coil) is different in each of these three
cases. B„ causes large differences in the lift force calculated by fIxB dv. The coil components
C and D (shown in Figure 9) always produce a repulsive force. For coil components A and B
(shown in Figure 9) in which the current is flowing in the z-direction (the velocity direction), the
product of Bx times current (J) produces the lift force. The sign of Bx changes along the velocity
direction (z), while the direction of the current remains the same. Therefore, the front part
(velocity direction) of these two elements (A and B) produces a repulsive force and the rear part of
these two elements produces an attractive force. The net force is the difference between the
repulsive and attractive forces; normally the repulsive force is greater. These two large-force
cancellations may cause a big difference in the force results. Figure 13 shows the lift-force
distributions along the coil for cases 1-3 and 6. The values in parentheses were obtained by
different commands in the post processor.

When different potentials in the ELEKTRA system are assigned. completely different
answers result, although both are used correctly according to the menu. According to the menu.
three kinds of potentials are defined: vector, reduced scalar, and total scalar. The vector potential is
for conducting-material-carrying eddy currents. The reduced scalar potential can be used for any
material and must be applied to volumes which contain source conductors. The total scalar
potential can be used for air and any nonconducting material.

The total scalar, reduced scalar, and vector potentials for cases 1-3 are shown in
Figure 14; force results for cases 1 and 3 are shown in Table 3. Some re gions were changed



Coil dimensions:

Length	 1 = 570 mm
Width	 w = 110 mm
Thickness	 t =10mm
Suspension height h= 45 mm

Guideway Characteristics:

Aluminum conductivity

a= 2.5 x107mho/m

Plate thickness	 t= 20 mm
Plate width	 w = 101 mm

Coil
NI = 22,082 A-T

10'mm
SECTION

VIEW Aluminum Plate 	 	 ' 
1001rin 1IX) 	

mm

1,600 mm

TOP
VIEW

Aluminum Plate

j- Repulsive
Force

11- Attractive
Force

v=2 nVs

, Repulsive
Force (C)

Repulsive
Force

—10 mm

Attractive
Force

Repulsive
Force (D)

FIGURE 9 Configuration of the Simulated Test Model
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FIGURE 10 Coil Mesh Distributions for Cases 1-3
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TABLE 2 Comparison of Forces for Three Mesh
Models

No. of

Case	 Nodes	 Lift Force (N)	 Drag Force( N)

1 16,458 42.1674 41.8236
2 21,879 6.4884 40.6935
3 22,113 -5.1105 40.5227

from total scalar to reduced scalar potential, as shown in Figure 15 where cases 4 and 5 were
calculated. (In Figure 15 the mesh distribution of case 4 is the same as the that of case 1, and that
of case 5 is the same as that of case 3.) The force results illustrated in Table 3 seem to depend
greatly on the scalar potential definition. As shown in both Tables 2 and 3, inconsistent results
were obtained for the lift force.

Lift force problems were reported to the ELEKTRA vendor who studied the case and
concluded that the problem resulted from talcing the difference between two large forces. In the
post processor, we usually set FIEL = NODAL and COIL = INTE (referred to as NODAL/INTE)
to recovery fields. When the velocity is very low, the FIEL = NODAL representation is not
sufficiently accurate and large errors will occur. Therefore, the vendor suggested that we set
F1EL = INTE and COIL = INTE (referred to as INTE/INTE) to obtain the best results for the five
cases (1-5). Different mesh setups were tested following their suggestion. Consistent results
were obtained with the command "set FIEL = INTE , COIL = INTE," but the forces are more
than 10 times larger than expected. This problem was again reported to the vendor who finally
realized that there was a real bug in the post processor using FIEL = INTE. A factor of 47t was
omitted when evaluating the fields from the eddy currents. The new version of the program, using
FIEL = 1NTE and COIL =INTE, resulted in consistent lift forces for the five cases. However, the
ELEKTRA results were still about 20% larger than the MAGFORCE results, as indicated in
Table 4.

Finally, an even finer mesh distribution (case 6) was designed. Considering the symmetric
condition, the number of nodes for the half space was 17,325. The lift force in this case closely
matched that of MAGFORCE, as shown in Table 4. The force distribution along the coil for
case 6 is shown in Figure 13.

In summary, when the velocity is high, greater than 10 m/s, both the commands
NODAL/1NTE and INTE/INTE work well. When the velocity is very low, under 5 m/s, only
INTE/INTE gives the correct results. The mesh distribution should be very fine for very low-
velocity cases.
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Line	 Value (Gauss)
1 -48.964
2 -38.0831
3 -27.2022
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7 16.3212
8 27.2021
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10 48.9638
Component: Bx

Case 1

Line	 Value (Gauss)
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FIGURE 12 Contours of Equal Bx on the Plane y = 50 mm for Cases 1-3



FIGURE 13 Lift-Force Distribution along the Coil at Low Velocity (v = 2 m/s) for Cases 1-3 and 6
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c=31 Vector potential

FIGURE 14 Potential Definitions for Cases 1-3

TABLE 3 Comparison of Forces for Different Scalar Potential
D ef in it ions

Case
No. of
Nodes Lift	 Force	 (N) Drag Force (N)

16,458 42.1674 41.8236

3 22,113 -5.1105 40.5227

4 16,458 -42.5561 41.1706

5 22,113 -40.2339 40.2824

Potential Definition

Reduced scalar area
(Figure 14)

Reduced scalar area
(Figure 14)

Reduced scalar area
(Figure 15)

Reduced scalar area
(Figure 15)
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FIGURE 15 Potential Definitions for Cases 4 and 5

TABLE 4 Comparison of ELEKTRA Program with
MAGFORCE Program

Computer	 No. of
Program	 Nodes	 Litt Force (N)	 Drag Force (N)

ELEKTRA Cases

1 16,458 24.15 34.18

2 21,879 23.78 33.99

3 22,113 23.70 33.94

4 16,458 23.58 33.95

5 22,113 23.81 34.22

6 34,650 19.51 32.18

MAGFORCE 18.35 32.26
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5 ELEKTRA: Unable to Simulate Large-Scale Maglev Systems

ELEKTRA can, in principle, solve various 3-D eddy-current problems. However, when it
was used to calculate the forces for the Magneplane system, computational problems (numerical
instability) were encountered. The reason is that the velocity option of ELEKTRA requires the
Peclet number to be smaller than 1 to avoid oscillations in the solution, i.e., numerical instability.
In designing meshes for larger systems, such as the Magneplane system (a practical maglev size),
it was discovered that the mesh criterion imposed a very difficult condition. A mesh spacing of
6.5 mm is required for velocities of only 10 m/s. A realistic 3-D mesh, therefore, would require
around 1.5 x 10 6 nodes, about 50 times the capacity of the Sun Sparc computer used in the
calculations. An order of magnitude of additional points would be required for calculation at full
speed. These problems were brought to the attention of the ELEKTRA developer, who designed
(and recently released) an alternative algorithm that may avoid the numerical instability, thus
allowing work with a high-velocity, full-scale maglev system.
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6 Other Methods for Solving 3-D Eddy-Current
Problems with Moving Conductors

6.1 Literature Search

The new, expanded velocity version of the ELEKTRA code, which is designed to solve
large-scale sheet-guideway problems at high speeds, was not available at the time this study was
made. Therefore, we did a literature search to see if other altematives could resolve the problems.

Four approaches were identified:

• Double-Fourier Series Method

• T-Method

• EDDYCUFF Computer Code

• Finite-Element Method with Upwinding

The four approaches solve essentially the same problems, such as transverse edge-effect
analysis. The double-Fourier series method, T-method, and EDDYCUFF computer code have the
same approximation, i.e., the thickness of the sheet guideway is ignored. The finite-element
method with upwinding (new high-velocity version of ELEKTRA), of course, uses finite elements
in the calculations.

6.1.1	 Double-Fourier Series Method

The double-Fourier series method was used earlier to analyze sheet-guideway problems
(0oi and Eastham 1975; Ooi 1975). In this method, the function can be formulated for two
dimensions. An infinite number of parallel rows of infinitely long, infinitesimally thin strip
guideways of finite width (d) were modeled. Rectangular superconductor coils (1 lone and w
wide) were arrayed periodically along the strip euideway, as shown in Figure 16. The Fourier
period was L in the velocity direction (x) and W in the transverse direction (z). L and W could be
chosen large enough so that each coil was considered to be electromagnetically isolated. The basic
idea of this approach was to model the coil as a double-Fourier series, then find an expression for
the eddy currents in the sheet guideway, and finally apply the Lorentz Force Law J x B to the
volume of the guideway to obtain the lift and drag forces (Ooi and Eastham 1975). (See
Appendix A for detailed information on the derivation of the eddy current for the sheet guideway.)
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•00

FIGURE 16 Coordinate and Fourier Series Base for Model of Levitation Magnet
and Guideway System

The advantages of the approach are:

• It considers the finite width (d) of the guideway and can be used to analyze the
transverse edge effects for the sheet guideway.

• It requires much less computational time and computer memory than the finite-
element method.

• It is relatively simple to implement

The shortcomings are:

• It considers only infinitely thin sheets.

• It is hard to transfer Cartesian coordinates to cylindrical coordinates, making it
difficult to analyze the Magneplane system.
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6.1.2 T-Method

There are many numerical approaches to solving 3-D eddy-current problems. Typical
methods are the A-(1) method and the T-S2 method. Both methods require space variables and
conductor variables, and, therefore, cannot deal effectively with open-boundary problems. In
recent years, investigators have turned to another approach, called the T-method, in which the
magnetic scalar potential 0 of the T-0 method is not included (Takahashi and Kurita 1988;
Toshiyuki et al. 1990; Tsuchimoto et al. 1992).

The advantages of the T-method are:

• Only one variable, T, is needed.

• There are no variables in space.

• It is easy to treat the external current and the external field.

• It can be used to analyze transverse edge effects for a flat-sheet guideway.

The disadvantages of the T-method are:

• The matrix, which contains nodes and other information, is dense compared
with the finite-element method.

• The sheet is considered to be infinitely thin.

• The method cannot be transferred to cylindrical coordinates.

Some studies have applied the T-method to maglev research (Takahashi and Kurita 1988;
Tsuchimoto et al. 1992). The following shows how the T-method applies to sheet-guideway

problems.

The basic Maxwell equations are:

vx1-1=1,

	

	 (1)
Tt

g =120 1-1,	 (2)
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where I-1 B. and I are the ma g netic-field, magnetic-induction, and current-density (the eddy-
current density exists only in the plate) vectors; po is the magnetic permeability of air: and a is the
electrical conductivity. Since the eddy-current density is solenoidal and V • J = 0, the current
vector potential, T, is defined as

1=vx-Y.	 (3)

Note that T is not equal to H because T does not exist outside the conductor plate: H. however,
does. From Equations 1-3 one can obtain

vx(IvxT)=--
aE

a	 at

Assuming the conductor plate is thin enough and that the eddy current is induced by the
z-component of the field B, as shown in Figure 17. the current vector potential T has only a
z-component:

a2Tz a2T, = aB 7 

ax2 dy 2	 at

Tz is assumed to be uniform through the thickness of the plate.

In the region of the conductor plate, Equation 5 can be discretized into the mesh
distribution with any method, such as the finite-difference method. A matrix representation is
expressed as follows:

[A] {Tz ) = [A 1 a (13z) 
at

Coil	 Vx

Eddy Current

FIGURE 17 Repulsive Maglev Vehicle with a Coil

(4)

(5)

(6)
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where [A] and IA1 are coefficient matrices. ( Bz} can be separated into two parts. Bt and Be. B1
is the magnetic field produced from source coils on a vehicle; Be is the reaction field from eddy
currents in a plate. Equation 6 becomes

[A] (Tz) [A .] a ( B t) + [A l a (Bd 
at	 at

Assuming the source coils move along the x direction with constant velocity vx, the first
term of the right-hand side of Equation 7 becomes

[Al a (BO _ [A , i a { B t) dx vx [ A l a (Bd 
at	 ax	 ax

B 1 for each point on the plate can be obtained by Biot-Savart's equation. The reaction field Be also
can be obtained by Biot-Savart's equation, written in a matrix form:

	

( Be} = [De] (-I el	 (9)

where [De] is a transformation matrix. From Equation 3, one can obtain the following relationship
between Je and Tz in the form of a matrix:

	

1 .1 el =	 (T}	 (10)

where [Ce] is a transformation matrix.

Substituting Equations 8-10 into Equation 7, one obtains

[A] (Tz ) = v„ [A'] a (13 ` ) +[A'][De][Cj j z) 

	

at	 at

This first-order differential equation in Tz can be numerically solved by a Runge-Kutta method and
used to analyze the transient state of maglev systems. After Tz is solved, the eddy-current density

Je can be obtained by Equation 10, and the forces can be computed using the Lorenz Force Law.

6.1.3 EDDYCUFF Computer Code

EDDYCUFF is a 3-D eddy-current computer code developed by Mitsubishi Atomic Power
Industries, Inc., and used by the MIT Plasma Fusion Center to analyze the Magnephme system. It
solves integral equations using a finite-element method. The primary assumptions are that there is
no current flow in the direction perpendicular to the sheet midplane and that the conducting medium

(7)

(8)
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has a thickness that is small relative to its skin depth, i.e., the current density through the thickness
is uniform. In practice, the thickness of the sheet guideway is ignored. The method is similar to
the T-method except that the magnetic-vector potential A is used instead of the electrical potential T.
EDDYCUFF software is currently available for the Sun Sparc and IBM RS6000 computers. The
documents and manuals are not yet available in English.

6.1.4 Finite-Element Method with Upwinding

In principle, a 3-D finite-element method, such as ELEKTRA, can solve eddy-current
problems for sheet guideways. However, there is a strict criterion that makes it difficult to
practically analyze full-scale maglev systems at high speeds. The reason is that when the Peelet
number is greater than I. the solution oscillates and the result is very poor. This has long been a
familiar problem in fluid dynamics. The solution is known as upwinding (Rodger et al. 1989).
Vector Fields, Ltd., has used the upwinding technique to modify its ELEKTRA computer code.
This new high-velocity code has been released but has not yet been tested.

6.2 New Computer Code Based on the Double-Fourier Series Method

As mentioned earlier, a double-Fourier series approach was used to analyze sheet-
guideway problems (0oi and Eastham 1975; Ooi 1979). The main advantage of the approach is
that it can be used to analyze transverse edge effects for sheet guideways. The shortcoming is that
the sheet is considered to be infinitely thin, meaning that the field is uniform through the thickness
of the sheet. This assumption may cause large errors if the sheet is relatively thick. To overcome
this disadvantage, Ooi's approach was studied in depth and a program was coded that duplicated
his results. His theory was then extended by considering two or more layers to simulate the effect
of the thickness in the sheet. Forces from our new ANL computer code were compared with
ELEKTRA and with experimental data. The results are promising.

6.2.1 Programming Ooi's Method (Double-Fourier Series Method)

During coding of Ooi and Eastham's method, many problems were encountered. One
problem was that his published papers were too brief and information was omitted or skipped
over. Step-by-step re-derivation, therefore, was required. In addition, some typing errors and
other problems had to be resolved. The errors in the papers are given in Appendix B.
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An example taken from Ooi and Eastham was used for comparison of their results with
results obtained from the program coded at ANL, as follows:

Magnet dimensions are:

Length	 1= 150 cm

Width	 w = 30 cm

Ampere-turns	 NI = 5 x 105 A-T

Suspension height 	 h = 30 cm

Guideway characteristics are:

Aluminum conductivity	 a = 3.72>< 10 7 mho/m

Effective thickness	 t = 0.5 cm

The magnet is designed to produce a lift of approximately four metric tons at a suspension height
of 30 cm above the guideway surface at a cruising velocity of about 500 km/h. Figure 18 shows
lift and drag forces vs. velocity curves for different strip guideway widths (d) from Ooi's model;
Figure 19 shows the results from the new code. Figures 20 and 21 show the analogous effect of
varying the suspension height (h). The lift and drag forces are plotted a gainst strip guideway
widths for a magnet width (w) of 0.3 m and a velocity (v) of 150 m/s. The new code closely
duplicates results from Ooi's model.

In the example from Ooi and Eastham, the magnet was positioned in the center of the
guideway. Ooi modified the formulation to calculate the transverse (or lateral) ed ge force for an
off-center condition (0oi 1975), as shown in Figure 22; results of the off-center condition are
shown in Figure 23. The same forces were calculated using the new code with similar results, as
shown in Figure 24. The only significant difference is that the guidance force decreases more
rapidly in the new model than in Ooi's model when zo is greater than 0.2 m.

6.2.2 Extending Ooi's Method

In order to check the importance of the thickness of the sheet, we compared the results of
Ooi's method with MAGFORCE results (assuming the sheet to be infinitely wide), as shown in
Figure 25. (Note: the magnet and plate sizes are the same as in the example given by Ooi lOoi
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FIGURE 18 Lift (solid lines) and Drag
(broken lines) Forces vs. Velocity for
Various Strip Guideway Widths (d) — Ooi's
Code (Source: Ooi and Eastham 1975)

19751.) The discrepancy between the two results is about 4-5%. Using Ooi's method with a
50.8- x 25.4- x 6.35-mm magnet moving over a 6.35-mm thick aluminum plate with a
12.7-mm suspension height, however, large differences occurred, as shown in Figure 26. In one
case it was assumed that the equivalent eddy-current sheet was on the surface of the plate; in the
second case the eddy-current sheet was assumed to be in the middle of the plate. The results
produced using Ooi's code were either larger (30%) or smaller (20%) than the MAGFORCE
results. The reason is that in Ooi's method the field through the thickness of the sheet is assumed
to be uniform. When the sheet is thin enough (relative to the magnet size and air gap), this
assumption is acceptable; when the sheet is relatively thick, however, this leads to a large error.

To overcome this shortcoming, Ooi's theory was extended by adding more layers to
simulate a thick sheet. The eddy currents in those layers are not independent. After solving
Maxwell's equations with the appropriate boundary conditions, expressions for eddy currents in
each layer are obtained, and the Lorentz force J x 13 can be calculated to obtain the lift, drag, and
guidance forces. The detailed derivations are given in Appendix A.
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FIGURE 19 Lift and Drag Forces vs. Velocity for Various Strip Guideway Widths (d)
— New Code

Figure 27 shows the force comparison for a 1.5- x 0.3-m coil suspended 0.3 m over a
moving 5-mm-thick aluminum plate. Since the plate is thin, there is no large difference between
the results obtained by modeling the sheet with one layer or five layers. Figures 28 and 29 show
that the number of layers assumed makes a significant difference for a small magnet suspended
close to a thick, moving sheet.

As described earlier. ELEKTRA simulated the edge effect for a small laboratory model
quite well. However, it is very time-consuming; 3-4 h are required to obtain each point with
reasonable accuracy. The double-Fourier series approach was used to calculate the force on a
small rectangular coil (magnet) placed near the edge of a moving aluminum plate with results that
compare well to ELEKTRA and to experimental data. Figure 30 shows the configuration of the
experimental/computer-simulation model used. Three different H*s were simulated:
H* = 12.7 mm (more than 100% overlap), H 5 = 0 (100% overlap), and H* = -12.7 mm
(50% overlap), as shown in Figures 31 through 33.
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FIGURE 20 Lift (solid lines) and Drag (broken lines)
Forces vs. Guideway Widths for Different Suspension
Heights — Ooi's Code (magnet width = 0.3 m,
velocity = 150 m/s) (Source: Ooi and Eastham 1975)
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FIGURE 21 Lift and Drag Forces vs. Guideway Width for Different Suspension
Heights — New Code (magnet width = 0.3 m, velocity = 150 m/s)

Magnet

I

Guideway

Magnet dimensions:

Length	 I =100 cm
Width	 w = 30 cm
Ampere turns	 NI = 3.86x 105 A -T
Suspension height h = 22 cm

Guideway characieristcs:
Aluminum conductivity 0 = 3.4 x 107mho/rn
Effective thickness	 t = 0.5 cm
Width	 d = 0.6 m

FIGURE 22 Simulated Model: Levitation Magnet at Transverse or Lateral Displacement zo
from Guideway Centerline
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FIGURE 25 A 1.5-v 0.3-m Coil Suspended 0.3 m over a Moving 5-mm-Thick
Aluminum Plate; NI = 5 x 10 5 A-T
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FIGURE 26 A 50.8- v 25.4- x 6.35-mm Magnet Suspended 12.7 mm over a
Moving 6.35-mm-Thick Aluminum Plate; NI = 5,994 A-T
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FIGURE 27 Calculated Lift and Drag Forces for a 1.5-v 0.3-m Coil Suspended
0.3 m over a Moving 5-mm-Thick Aluminum Plate; NI = 5 x 10 5 A-T
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FIGURE 28 Lift Force for a 50.8-v 25.4- x 6.35-mm Magnet Suspended
12.7 mm over a Moving 6.35-mm-Thick Aluminum Plate; NI = 5,994 A-T
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Aluminum Plate

Magnet or Coil	 H.

h=12.7 mm

FIGURE 29 Drag Force for a 50.8- x 25.4- x 6.35-mm Magnet Suspended
12.7 mm over a Moving 6.35-mm-Thick Aluminum Plate; NI = 5,994 A-T

Magnet or coil dimensions:

Length	 1 = 50.8 mm
Width	 w = 25.4 mm
Thickness	 t = 6.35 mm
Ampere turns	 NI = 5715 A-T
Suspension height h = 12.7 mm

Guideway characteristcs:

Aluminum conductivity a= 2.5 x107 mho/m

Thickness	 t = 6.35	 mm
Width	 d = 101	 mm

FIGURE 30 Configuration of the Experimental/Computer-Simulation Model
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FIGURE 31 Force on a 50.8- 25.4- x 6.35-mm Magnet Suspended over a
Moving 6.35-mm-Thick Aluminum Plate; H • = 12.7 mm

FIGURE 32 Force on a 50.8- x 25.4- x 6.35-mm Magnet Suspended over a
Moving 6.35-mm-Thick Aluminum Plate; H • = 0 mm
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7 Conclusions

The existing ELEKTRA computer code is capable of performing basic calculations for
three-dimensional, small-scale models of maglev with a continuous-sheet guideway. The
ELEKTRA results matched the experimental data and the MAGFORCE results quite well at
intermediate velocities. When using this code at very low speeds (less than 5 m/s), users should
be very careful because numerical errors may occur. In order to avoid numerical errors, finer mesh
distributions have to be designed and nonstandard force commands have to be used in the post-
processor. To date, because of numerical instability, ELEKTRA cannot simulate large-scale, full-
velocity maglev systems while using the Sun Sparc computer system. The new ANL double-
Fourier series computer program has proved to be a useful tool for analyzing continuous-sheet
guideway maglev problems. including transverse (lateral) edge effects. By adding more layers of
current sheets, to simulate the thickness of the sheet, the accuracy of the results is greatly
increased, especially when the sheet is thick. The force calculations are in close agreement with the
experimental data.

Vector Fields, Ltd., recently released a new high-velocity version of ELEKTRA in which
the upwinding technique was used. The new version is supposed to be capable of simulating high-
velocity, full-scale maglev systems. Additional research will be required to test and validate the
new velocity version.
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Appendix A:

Summation and Expansion of the
Double-Fourier Series Method
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ej(ax+yz)NM
(Flik)y y, = RealI

D;(Bs.„	 -hki	 el31h,-(41a=1	 NL
ePlhs BRjmn

Dj(A5,,, ePlbs-4I	 AR,,„„ el31h(-h1
NL

1=1

i=1

(1=x.), 1. (k=1,2,...NL) ,(A. I)

(ax-'z)

45

Appendix A:

Summation and Expansion of the
Double-Fourier Series Method

The major difference between our approach and Ooi's method is the expression for the
magnetic field intensity. Other parts are almost the same, except that we represent the guideway as
multilayer eddy-current sheets.

The summation and expansion of the double-Fourier series method consists of four parts.

1. Magnetic Field Intensity

We found the magnetic field intensity 14 at different layers of the guideway (Figure Al)..
The y-component of H was used in the guideway interaction, and the x- and z-components were
used to calculate forces. In this part, only the finite thickness is considered; finite-width effects are
considered later. A general expression for the three components of Fl in a double-Fourier series is

where Di is a coefficient containing constants and other parameters; Asmn and Bsmn are the
Fourier coefficients of the source coil, which are known; ARjran and BRjmn are the Fourier
coefficients of the guideway of the jth layer, which are unknown and to be solved.

2. Guideway Modeling

A coefficient C hi, is used to consider the effect of the finite width of the guideway. We will
find the relationship between Agjmn, BRjmn, and CI.,

3. Guideway Interactions

Maxwell's equations and power equality equation will be used to obtain CIrn in the matrix

forms.
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4. Electromechanical Forces

The Lorentz force will be applied to all the layers of the guideway to calculate total lift,
drag, and guidance forces.

A.1 Magnetic Field Intensity

For clarity, consider a three-current sheet guideway, as shown in Figure A.1. The
derivation is similar if additional sheets are added. In the following derivations, subscript "S"
denotes the stator (superconductor coils) and subscript "R" denotes the rotor (the conductor plate).

In the model, all space is divided into five regions, regions Ito V. The superconducting
magnet is represented by four rectangular filaments, each of which can be regarded as a sheet
current Ks in the plane y = h. Ks can be written in the following form:

N

	Ks = E	 E	 (2yAs.„ cos() sin(ccx)i — 2aAs mn sin() cos(rxx)ic". )

	

n=1,3,5	
(A.2)

=
	

E	 (Ksw cos(yz) sin(ax)i — Ksz, sin(yz) cos(ax)k),
n=1,3,5.

where Ksxi- = 27Asmni Ks. = 2CcA5mn, cx = 2 n m /L, and y = 2 n n /W; L is the Fourier period in
the x-direction (motion direction), and W is the Fourier period in the z-direction, transverse
(lateral) direction, as shown in Figure 16.

Equation A.2 can also be written in the following equivalent form:

N

Rs = V X U, E	 (2A5mn sin(YL) sin(ax)), 	 (A.3)
o=1,3,5	 m=1,3,5

where Cly is a unit vector. Since the magnet is represented by the four rectangular filaments which
produce the space impulses, the shape of the derivative of the space impulses is as shown in
Figure A.2.
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-Prcl- -Do- -
Sheet Current Ih2	 hl II

y=0 Conductor Plate /7 Sheet Current 2
NIL	 \Niqan \COM Sheet Current 3ran\ NS,

NM.

FIGURE A.1 Model of Multiple Layers of Sheet Currents to Simulate the
Conductor Plate

FIGURE A.2 Model for Determining the Double-Fourier Coefficients
Asir.
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As. can be determined by the following formula:

2

8 A-T	
2

s
WL

n(ax) sin(z) dx dz

=  8 A-T  (cos -1,(W w ) cos	 + vl(cos a(1-- — 1)— cos oc(L + I))
a WL	 4 2	 4 2	 4 2	 4 2

= A-T	 sin( or ) sin( nic ) sin(nirw) sin()
nm 7,2	 2	 2	 W	 L

where A-T is the ampere turns of the magnet. Note that Rs must be selected to satisfy viZs = o.
Equation A.2 can also be written in the complex form (Ooi and Eastham 1975):

N

Rs = Real V X Uy	 (As.	 + Bsmr, e.l(c" t'z))
	

(A.5)
n=1,3,5 . m=1,3 ,5,

where Rsmn = - ASmn.

For the example in Figure Al,. the guideway plate is composed of three sheet currents K8 1, RI22,
and k83. k- Rk (k = 1,2,3) can be written in the form of double-Fourier series.

KRk =	 (27ARkmn cos()" s n(ax+Ok)i — 2ocARkmn sin(7z) cos(ax+k)fc.

	

n=1,3,5	 m=1,3,5

	(k = 1,2,3).	 (A.6)

(A.4)
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Note that the difference between Rs and 1-(" Rk (k = 1,2,3) is that RRk has a delay angle O k. ARkrnn
is unknown and is to be solved. KRk (k = 1,2,3) can also be written in the following form:

KRk =	 2"Y(ARkrm0 cos(yz) sin(ax) + ARk,m. cos(yz) cos(ax)ft
n=1,3,5	 m=1,3,5,

- 2a(ARk„,„, sin() cos(ax) + ARknam sin(yz) sin(ax)ic

=	 (KRk,„ cos() sin(ax) + KRk„ cos() cos(ax))1
n=1,3,5	 m=1.3,5,

- (K Rk„ sin(1z) cos(ax) + K Rkz sin(yz) sin(ax))i. k = 1,2,3, (A.7)

where Alum. = Akkmn cosq)k, ARkunn = ARkm. sir*, KRkx, = 2YARkrmn, K-Rkxr = 2YAR,
KRk„ = 2aARk.man, and KRkzn 2aARkilmn•

Using the vector potential A" as a variable, we solve the Maxwell's equations:

ak?	 _
ax2 ay2 az2

and
	 	 ÷ aq + aiti =0

ax2 ay2 az2

Since the current in the coil is assumed to be represented by a double-Fourier series in a harmonic
form, the solution of Maxwell equations should also be of this form to satisfy the boundary
conditions. The boundary conditions are that the fields must vanish at y = 	 and

H - H2k = -Kz and	 - El2z = Kx

Or	
110 aY	 ay /	 1-10 aY 	 aY

taAiz a A2z1_ Kz and ] la A,„ 	
(A.10)

where subscripts 1 and 2 denote the field immediately on either side of the discontinuity.
Therefore, the solution of one of the harmonic solutions (nth in transverse [lateral] direction [z] and
mth in motion direction [x]) for five regions are:

Ai = E l e- PY sin(ax) cos(r)	 A t = E3 e -PY cos(ax) sin(yz)

	

E5 e -PY cos(ax) cos(yz) ,	 + E7 e -PY sin(ax) sin(yz)

(A.8)

(A.9)



Avz = S4 eh cos(ax) sin(yz)Ax;, = S2 eh' sin(ax) cos()
and

+ S6 eh cos(ax) cos(yz) ,	 + S8 eh sin(ax) sin(7z)
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A ll, = (D I e -13Y + D2 eh) sin(ax) cos(yz)

+ (D5 e- PY + D6 e1Y) cos(ax) cos(yz)

= (G 1 e -PY + G2 e PY ) sin(ax) cos()

+ (G 5 e- PY + G6 eh) cos(ax) cos()

Allz = (D3 e-I3Y + D4 eh) cos(ax) sin(yz)

+ (D7 e-PY + Dg e l3Y ) sin(ax) sin()

Am, = (G3 e-PY + G4 eh) cos(ax) sin(yz)

+ (G7 elh + G8 eh) sin(ax) sin(yz)

Arvx = (C 1 e -PY + C 2 eh ) sin(ax) cos(yz)	 Arvz = (C 3 e -PY + C4 eh) cos(ax) s n(yz)

+ (C5 e- PY + C6 elY ) cos(ax) cos(yz) ,	 + (C7 e-PY + C8 eh) sin(ax) sin(yz)

where p= a2 +y2
 .	 (All)

Then the boundary conditions are used to determine the coefficients E1 , E3, E5, E7, Di, D2,
D3, D4, D5, D6, D7, D8, GI, G2, G3, G4, G5 G6, G7, Gg, CI, C2, C3, C4, C5, C6, C7, Cg, S2,
S4, 56, and Sg.

The relationship between H and ,:=1- is

1--Lv	 aAzi+iait, aitz lt aa„,71
Pa

1=xii=1
Pal ay	 I az	 ax 1	 ay

	 (A.12)

At y = h, the boundary conditions are:

Hix — Flux = -Ks z, Hiz — HHz = KSx, Ar = A 115 , and Ai = Allz

where

1 OA tz = 1—pE3 e -P Y e0S(OCX) sin() + E7 e-PY sin(ax) sin()),
110 dY	 1-to

Hi _ 1 Ahr
= 

1
—	 NEI e -P Y sin(ax) cos() + E5 e-13 Y cos(ax) cos(yz)) ,

1-10 aY
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Fha =  Ialt, llz – 11(-D3 e-PY + D4 ePY) cos(ax) sin()
dY

+ 134-D7 e-PY + D8 ePY) sin(ax) sin(),

HI _  1 aA nz _	 R—k D i eY + D2 ePY) sin(ax) cos()
1-1. 0 ay

+

	

	 e-PY + D6 ePY ) cos(ax) cos()
P-o

	

Ks, = Ks,z cos(yz) sin(ax), and	 Ksz = Ksr sin(Yz) cos(ax) 	 (A.13)

Therefore,

R (-Eie-Ph + D ie-Ph – D 2ePh ) = oKsr,	 (-E5& 	 D 5e-Ph – D 6e13h ) = 0

(-3e 	 D3 e-Ph – Pb ) = -I-L oKszz ,	 (-E7e-1Th + D7e-Ph _ D 8ePb ) = 0

+ D 1e – D2ePb) = 0,	 -E5e-Ph – D 5e-im – D 6ePh = 0,

-E 36 – D3 e-I3h – D4ePh = 0 ,	 and	 -E7e-Pb – D7e-Pb – DO' = 0 .	 (A.14)

Similarly, at y = 0:

P ( - D 1 + D2 + G 1 G2) = Vo KRizz	 R (-D5 + D 6 + G5 - G6) = 40KRIxt

R (-D3 + D4 + G3 - G4) = -VO KR1zr	 13 (-D7 + Dg + G7 - G8) = -1101CRln

DI D2 - G1 – G2 = ,	 D5 + D6 - G5 - G6 = 0 ,

D 3 + D4 - G3 - G4 = 0 ,	 and	 D7 + D8 - G7 - G8 = .



52

At y = hi:

13(-G 2ePh , + G 2ePh l	 C2ePh n )=1-10Kit2 	 13(_G5 eo h l	 C6ePht)=1-101(u2x;

13(-G 3 ePh . + G4e 131'h +C 3e-Ph, — C4ePh1 ) = -1-10KR2zr,	 13(-G7ePhl + GseP h, +C7e-Ph , — Cse Ph ) = -1-1oKR2zi

G	 + G2 3h —	 — C2e 3h l = 0,	 Gse-Ph, + G6eP h n — C 5e-P1), — C 6 eP h , = 0,

G3 e-Ph , + Gollth — C 3e-Ph , — C4eP h , = 0,	 and	 G2e-Ph l + G 8eP 5 l — C 7e-Phl — C 8e 3h , = 0.

At y = h2:

(*C i e-42+ C2e13h2 — Kvoh,)= R0KR3zr,

f4-C3e-Phz + C4e0h2 — K4e0 q = -110KR3zr,

C i e-Ph2+ C 2ePh2— S 2e131)) = 0,

C3e-Ph2+ C4e131)z — S4e111». = 0,

0(-05e-Ph2+ C6ePlu — K6e0 h)) =- ftOKR3xi,

0(-C2e-Phz + CseP h) — K 8eP h4 = 5toKu3zi

C5 e-Ph2 + C6ePtu — S 6 e13h2 = 0,

and	 C2e-Ph, + C8e0h2— S 8 eP h 2=- 0.	 (A.15)

Solving these 32 equations, we can obtain 32 coefficients:

Ei = - alKs,„eoh KRixr KR2,irePh, + KR3e13h4 E5 = - P4KRixi + KR2xiel3h + KR3x,e0h,),
20	 213

E3 = g(Ks„el3h KRI„ KR2„e0h 1 + KR3zre3h2) ,	 E7 =	 + KR2zie1Thl + KR3z0h2),

D I = -	 KRixr + KR2xre3h + KR3.013b2),20

D2 = -	 Ks,“ e-Ph,
20

D5 = -	 KR + KR2e0 h, + KR3xie13142P

D6 = 0,
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D 3 =	 KR],„ + Ks 2„e Phn + KR3zre pq 	 D7 =	 KRI + KR eP h n + K ePh.,)

D4 =	 Ks e -Ph
2P "	

D8 = 0

G = - /11-0-( K R 2 ePh • + KR,xreph,)
20	

G5 = - 121( K R2,6 ePh ' + KR3„ie 01),, ) ,

G2 - P13) (Ks,,,e-Pb + KRIzr)

G3 - WKR2zre 13111 + KR3zrePh2)

G 4 = 1"2i(Kszre-13h + KRizr)

C l —	 KR ePh,
2P

C 2 = ---(Ks, e 1  + KRl + KR2x,e-13h1)
20 

C3 = 110 KR3 el3h7
2P

C4 =	 ( Kssre-Ph + KRizr + KR2zre-Ph'

G6 = - 1.21-(KRI„;) ,

G7 = lijfi) (KR2ziellh t + KR3ziePhz)

Gs = 7(KRisi) •

C5 = - 1.1{)-KRRiel3h2
23

C6 = - 11-°213 ( KRixi KR2xie)

C7 - P=D-I<D, •e13111.

2p

Cs = lu-1)20 (KRIzi KR2zie-Ph,)

S2= -(Ks	 + KRixr +KR2sre -Ph, +	 S6= - 1-±Q (KRI + KR2
X1 Oh l +KR3„,e-13b2„)

2P	
2/3	 XI 

S4 44(Szr e - ph + KR lzr +K R2zr
e_ph, ±KR3zre- 13h2) ,	 S8 -= 7 (KRIzi KR2zie-Ph ' KR3zie-13). (A.16)

213 



D A,
—

1.10 OY

m.	 l a Ax a Azi	 d

"Y	 dx	 an
H, = 	

cY
(A.17)

The relationship between 4 and Ft is
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Finally, the three components of 11 at different layers can be expressed in the complete

form:

N M INC4- ARIr.n — AR2neth l — AR3rmn eP h 2 + As rrane - I3h )cos(ax) sin(yz)
Fi x 	 o = Z.,

0=1 m=1	 - 04 A5 llmn AR2Imnel* AR3Im'elh') Sin(Ca) Sin(TL)

N M f/kRirmn + Au rarnePh t + AR3rmneO h , + ASrmne-Ph) sin(ax) sin(yz)

o=i
(11Y)y= —	 m121 +13(ARIIfl+ AR,mod h , + AR3 , mneP h l cos(ax) simyz)

N M 4- A R Irmn — AR2rmnePh
(i-i =	

i — A03 neP h 1 + As rmn e d3h ) sin(ax) cos(r)
x )y 0 =I	 ,

0=1 nr=l - ylARlimn + AR2i modh l + AR3m, neP h ,) cos(ax) cos(r)

N 04_ AR2rm. — AR3rmnefghrh 1)+ AR irmndh l + Asrmne -{3h * Ph .) COS(CCX) sin(yz) 
(A. 19a)MO)/ =h	 ,_A	 cp(hz-N,)_ A	 l3N n ) sin(ax) sin(yz)o _ i m=1 - in A R2inni	 R3tmn	 R	 e

N M I3(AR2rmn AR3	 eN h 2- 1. 1) + AR irmn el3b ' + ASrmne -1311,-Phl ) sin(ax) sin(yz) (A.19b)
(H OY =	 /3(	 eig	 + Ah—h 1) l3h 1 ) cos(ax) sin(Yz)iiii +	 .1321mn + R3tmn	 R 1 mue

N M	 AR2rmn_ AR,rmnep(hrh, ) 4. A R limndh, +Asrmne-ph+fth,) sin(ax) cos(yz)
(HA' = =/	 — R2ann+R3 r-4A	 A	 430,A) AMunn ePh , ) cos(ax) cos(yz)

(A.19c)
um 	-n= / m=1

N 04- A15= + AR2rmn erA h rh 1)+ A R irnei/h2+ As rm „e-PH3h 2) cos(ax) sin(Yz)
M x )), = NI 

n _ 1 m_ 1 +	 - ,AR31mn 
A 

R2Imn ell(13,1,1)+ A RI mn e0 b , ) sin(ca) sin()	
(A.10a)

-	 u3 

N M P( AR3rmn A R2rmne1102-0+ AR1rmnePhz + Asnin,e -I3h+Ph2 ) sin(ax) sin(yz)
(HY)Y	 /	 + A	 l3(hrh,)+ AR lannel3h=) cos(ax) sin(yz)	

(A.20b)
„ =1 m=1 +	 1331mo	 R21mne

and

"y(- A R „mn + A02m 0e Nh =40 + ARirmneA2+ A„..e-R h+Pq sin(ax) cos(yz)(Hdy h, =.n L	 ,,	 h	
(A.20c)

r h I)+ AR htnne0 b 2 ) cos(ax) cos(yz)-	 m	 + n- ,• 123 mn A
• R2 mn

(A. 18a)

(A. I /(b)

(A. I8c)
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The above can also be written as complex forms:

N
= Real	

0.513(AR mn + AR2mngh ' + AR3mnel3h= + Askake-Ph)(HO, = 0	 I L
n=1 m=l	 x (oax vyz) _ e_1(cc.-YL9

= Hsly + HRIly + HR12y + HR130	 (A.2 la)

N M
= Real	

0.513(AR2., + AR3mnel3th'h ' ) + ARImneiTh ' + Ask,ke-13h+Ph‘)
(Hy)y = b,	 I

n=1 m=l	 X (e1(ax+Yz) — ei(C'"))

= Hs2y + HR2ly + H 022y + HR23y	 (A.2lb)

and

= Real	
0.513(AR3uun + A R2rmodth'0 ' ) + ARiume02 + Asrm”e-PhA-13h,-)

(Fly)y = k,	 L L
o=1 m=1	 X (efax+7z) — eJ(a.-7z))

= Hs3y + HR3ly + H R32y + HR33y •	 (A.21b)

The form of Hz and Hz are similar.

If more layers are required to obtain higher accuracy, the derivations of H are similar to the
above. The formula of El for NL layers should be

NL
Hkk = HSkk +

	

	 HRIqx (k = 1,2,..., NL) ,	 (A.22a)
J=1

Hky = Hsky +	 H Rki y (k = 1,2,..., NL) ,	 (A.22b)

1=1

NL
and	 H = Hskz +	 HRkZ (k = 1.2,..., NL) .	 (A.22c)

J=1
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A.2 Guideway Modeling

This and the following sections follow the calculation of Ooi and Eastham (1975) but
incorporate multiple layers in the guideway. To consider the finite width of the guideway, they
described the sheet current in the guideway in the following form:

KR = Real Curl Uy C(x,z) , 	 (A.23)

where	 C(X,Z) =	
ej(ca4z-D))

M 2L-1
(A.24)

m=1 1=1

where	 = nl/d (d is the width of the guideway), I = 1,3,5... 2L-1, and S, is the sign. For
the region (W/4 — d/2) z 5. (W14 + d/2), S,, = 1 and D = W/4 — d/2. For the region
(-W/4 — d/2) z (-W/4 + d/2), Sn = -1 and D = -W/4 + d/2. Cmi are the unknown complex
coefficients to be solved. In other words. C(x,z) is represented by 2L- I harmonics and is only
valid in the guideway regions. When the guideway is divided into NL layers, then

M 2L-1

C(X,Z)k =	 ckmisn(d(a.-'uz-D) — efax-(z-D)) (k = 1,2,.., NI.).	 (A.25)
m=1 1=1

C(x,z)k can also be represented in the same double-Fourier series base as Equation A.21.

M N
C(X,Z)k =	 lARimanel("'w) + BRk.ne l(a" -Yz) ) (k = 1,2,..., NL)	 (A.26)

m=1 n=1

Expanding Equation A.24 in the Fourier series base of Equation A.25, one can obtain the Fourier
coefficients:

2L- I
ARkrnr, =	 j2 sin(yW/4)(Y IR 1 — ZIS I) Ckm1 (k = I,2,..., NL) , 	 (A.27a)

1=1

BRkm. = -Al2km0 (k = 1,2,..., NL) , 	 (A.27b)

y = e jd/ 2	
Zi= e	 2

and

where



and (A.28)
= sin k + yk1/2) 

+ y)W/2

sin k
—	

— ryk1/2)
Si 

— 7)W/2
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In order to implement an algorithm easily, one can define a NL*(2N) vector ARrn

	

containing ARkin. and B Rkmn (k = 1,2 	  NL) and define a NL*(2N) base vector bm containingeAccii-iyni and ejiax-yz))
. Equation A.26 can be rewritten as

T —
C(X,Z) = L	 ARm .

The superscript T denotes the transpose of the vector.

An L vector Cmi can also be defined containing Ckmil as following:

[ARCL]
IARCL1

ARm =

	

	
Cmi	 (A.30)

1ARCL]

where [ARCL1 is a 2N x L matrix, whose elements are defined by Equations A.26 and A.27.

A.3 Guideway Interactions

Assume the guideway is divided into NL layers. In the region of the guideway. the
relationship between the eddy current KRk (k=1,2,...NL) and the electric field density
Ek (k=1,2,...NL) is

	

kRk = tT tk
	 (k = 1,2,..., NL) , 	 (A.31)

where a is the conductivity of the guideway. and t k is the effective thickness of the guideway for

the kth layer.

The electric field density E 	 be written

( A. 29)

=	 X	 Hsk +	 fiRkj)— grad tilk k = 1.' 	 NL	 (A.32)
1=1
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where -grad cbk is the conservative electric field, and (131, satisfies div grad €/ok = 0. CDk can be
written in a double-Fourier series:

M N

	

= Real /	 Px,,ne/(ax-'lz) + Qkmnei (a.-Tz) (k = 1,2,..., NL).	 (A.33)
m=1 n=1

Since R.- R x only has x- and z-components, so does Ek., and since = vx. Equation A.32 becomes

	

= 	  (k = 1,	 NL),
ax

NL
a(13k

	

Eky = Vx110(Fisky + 	 FiRkjy)— —az 
(k = 1,2,..., NL).

i=1

Note that Equation A.31 is valid only in the region of the guideway. This can be obtained by
insisting that the following equation hold:

	

G tk	 ' RRk = R Rk RRk (k = 1,2,... NL) , 	 (A.36)

in the surface integral over a Fourier period. Using the power equality equation, which is
equivalent to saying that real and reactive powers in II I 2Z are equal to these in I E * , the following
equations must be satisfied:

and	
L/2	 W/2

(CS tkEkARkz Kikz) dz dx = 0 (k=1,2,..., NL) .
1U2 -W/2

From Equations A.23 and A.26, one can obtain

M N
KRkx = Real /	 j Y(A5kninei(c"-'7z) — BRknineJ('-)' ) ) (k = 1,2..., NL),	 (A.39)

m=1 n=1

M N
and	 KRk, = Real I	 ja (ARb,,ne-l( ax-,Yz ) + 13 Rx.„0(ax-Yz )) (k = 1,2,.., NL).	 (A.40)

m=i n=1

and

(A.34)

(A.35)

U2	 W/2

(a tkEKRk„ — K?zkx) dz dx = 0 (k = 1,2,..., NL) ,
IL/2 

f

 W/2

(A.37)

(A.38)
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Substituting Equations A.34 and A.39 into Equation A.37, one has the results:

YARkmo 
Pkmn =

	

a a tk (k = 1,2,..., NL),	 (A.41)

7BRkaa. and	 Qkmn =	 (k = 1,2..... NT..). 	 (A.42)acstk

NL
	Using the 2N vector bkm (k =	 NL) as base, Hsky and 	 HRk Y (k = 1,2 	  NL)

1-1
in Equation A.22 can be written as

	

Hsky = Real	 13Hsk„, (k = 1,2,..., NL) ,	 (A.43)
m=1

and

	

	 HRk, = Real 1:71.1„,HRkim (k. j = 1,2..... ML).	 (A.44)
m=1

where

	

Hsk, = [HSASk] ASkm (k = 1,2,..., NL) ,	 (A.45)

HRkj rn = [HRARkd ARk im = [HRARk i] [ARCL] C5m1
and	 (A.46)

=[HRCLk] C kml	 = 1,2,..., NL) .

Likewise, the z-component of RRk and gRk can be written as

m

	

KRk, = Real	 ETkmKkzm (k = 1,2,..., NL) ,	 (A.47)
m=1

and	 Ete = Real	 13TanEkzm (k = 1,2,..., NL). 	 (A.48)
m=1



[Zi2m1 • • • [ZiNi.
[Z21m] [Z22ml • • • [Z2NLm]

"ZtvLim] [Zi.] • • • [Z
and [Ym] =

where

(A.52)
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From Equations A.25 and A.26, one has

	

Kum = [KZCLk] Ckml (k = 1,2,..., NL)
	

(A.49)

From Equation A.35, one has

NL
Ekm = 110 V ( HSkm + HRkjm) + [EZPQ1J Pkm

j=1

NL

= 110 V [HSASki Asian + 1-1-0 V [HRCLO Ckml
J=1

	+ [EZPQ0 Pkm (k =- 1,2,..., NL) ,	 (A.50)

where Pkm is a 2N vector containing the coefficients Pkmn and Qkmn in Equation A.33.
Equations A.41 and A.42 can be written as

	

Pkm [PQA1R-li ARk. = [PQARd[ARCU Cicuil (k = 	 1,2,..., NL)	 (A.51)

Substituting Equation A.51 into Equation A.56 and thereafter Equations A.49 and
Equations A.50 into A.38, one has

([Z-m]	 — [Ym] Asm) = 0 ,
m=-1

where * denotes the complex conjugate operation, and

[Ziira] = [KZCLIfT(ri t11-10 [FIRCLII] + Gt1 [EZPQ1][PQCLI] —[KZCLI])

[Z12m1 = [KzCLi] TVst1 p5 v [FiRcL 12J )
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[Z im,] = [KZCLi] T{(5 	[FIRCLiNd

[Z21 .j . [KZCLIT( 0. t2 L0 v

[Z22m] = [ICZCL2]* T ( t2 ILO V [HRCL22] + G t2 [ EZPQ2] [PQC1-2] [ 1(ZCL 2]) •

[z2Nun] = [KZCL2]*T{G t2 1.to v [HRCL2Nd ,

[ZNum] = I KZCL6a,1*	 tNL 110 V [ FIRCLNL I]

[ZNL2m] = [KZCLisa] Tla tNL p-0 v [ HRCLNL2] ,

tm_ v [FIRCLmj +[Zm,m,m] =- [KZCLNLY1 tm, [EZPQm [PQCLNL] —il(ZCLNdl

[Y lral = [ 1(ZCL I] T { G t1 110 v [HSAS] )

[ Y2m] = [1(Za-. 21*11 — G t2 1.16 v [FISAS 2] )

[ YNLm] = [KzCLNLIT(— 6 NI, j.lo V [ HSASNL] •

Rm l is a (NL)L x (N1)1- matrix and I'6.] is a (NL)L x (NL) 2N matrix. Equation A.36
is satisfied only when

Cmi =[Z,(,)-1[Yud Asm . 	 (A.53)



Fy =

NIL f

4 k=1

— P-o ( KRkz Hskx	 Fisk) dx dz

W/2

/W/2
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A.4 Electromechanical Forces

The Lorentz force law J x c3- can be applied to the guideway. The lift force Fy and the drag
force F„ are

NL M N 	,

=	 Real (0.5 go LW	 0.5 e 0114A*Rkmn Ask.m + B Rkmn BSkmn))
4k_ rn= I n=1

where hk is the distance between the magnet and the kth sheet current of the guideway.

F„ =

	

	 w'	 KRkz Hsk, dx dz
'k=1

NIL	 M N
= 1, -T.11 Real (0.51-10 INV I	 0.5 a p el3h4GA YRkmn ASk.° +UBkfl BSkmn))• (A•55)

m= n=1

There is no guidance force unless the magnet is laterally displaced. Figure A.3 shows that
the magnet is laterally displaced by zo. In this case, the vector Asm contains a new set of Fourier
coefficients:

Agskm. = Askm.elY4	and	 learn. = Bskm.erYz° •

(A.54)



zi

guideway

t53

FIGURE A.3 Magnet at Transverse Displacement zo
from Guideway Centerline

The expression of guideway current in Equation A.25 keeps same except that
1=	 2L, i.e., both odd and even harmonics exist. The guidance force is

Fz = liLL'	

r2	

KRkx FISky dx dz
4

k= 1	 .W/

NLM N

= 11 Real( 0.25 p.0 LW	 j'y 13 e - Ph(( -4k.„ Ags kmn + (13);zun „ Btsk.n )) . (A.56)

4 k= 1	 m=1 n= I
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Appendix B:

Errors in the Ooi and Eastham (1975) Paper
and the Ooi (1975) Paper
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Appendix B:

Errors in the Ooi and Eastham (1975) Paper
and the Ooi (1975) Paper

PAPER: Ooi and Eartham 1975. 

Equation 1 should be

Ks = Real Curl 1.7 yI (Asmr, Oa ), Yz ) + Bs r. efi coc -In))

Equation 2 should be

	

AT 8	 na	 MC •As., = — 
211M — 

sin(—) sin( I ) sin( rum  ) s n(16 )

	

ic	 2	 2	 L

Equation 7 should be

2L-

	Arr. =	 j2 sin(1W/4)(Y IRI - ZiSi)
1=1

Equations 22 and 23 should be

Fy =
-U2

L/2 iW/2

	

(Krz Hsx Kr% Fis,) dx dz

= 1-Real (0.5 i.to LW	 0.5 132 e-P h(A;mr, A,.. +13;.,13,n,„))
4

F, = -
4
1 

L/2 I/ 2

40 Kr,	 dx dz

W/2

1- U2	 -W/2

(1)

(2)

(7)

(22)

= 14-Real (0.5	 LW	 0.5 a 3 e-13 /401;mr, Amn + (j13);`,,,n Burn))	 (23)
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PAPER: Ooi 1975: 

Equation 7 should be

=
4

L./2 iW/2

110 Krx Flsy dx dz

= iReal (0.25 go LW / j 13 e- P4(-A);mn Alsnsn + (B);!„,, 131s,„.))
4

Equations 9a and 9b should be

Alsinsn = -2 jsin( r z ) e-J7z0 Asmn

Blimn = 2 jsinf . z ) e- 17z0 Bn

-L/2	 -W/2

(7)

(9a)

(9b)
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